
Some algorithmic methods for computing the

sum of powers.

Yerzhan Utkelbayev, Madiyar Aitbayev

May, 2015

Abstract

In this paper several methods with different algorithmic complexity are
considered for sum of powers. Different algorithmic methods are shown
based on some known mathematical facts.

1 Introduction

Suppose we have positive integers numbers n, k and p. Find:

f(n, k) = 1k + 2k + ... + nk =
n∑

i=1

ik.

Sum of powers were investigated in 17th Century by Johann Faulhaber of
Ulm. He described sum of powers in terms of n(n + 1)/2. D. Knuth showed [1]
that Faulhaber got this result for sum of the 13th powers:

960N7 − 2800N6 + 4592N5 − 4720N4 + 2764N3 − 691N2

105
, where

N= n(n+1)
2

He also found closed formulas for some small 13 <= k <= 17 and states
that there should be polynomials with alternating signs for all sum of powers
[1].

Nowadays, it calls Faulhaber’s formula. It can be expressed as sum of powers
(k + 1)th-degree polynomial function of n with Bernoulli numbers [2]:∑n

k=1 k
p = 1

p+1

∑p
j=0(−1)j

(
p+1
j

)
Bjn

p+1−j , where B1 = − 1
2 .

Interesting facts which can help calculate sum of powers by modulo p (prime
number) were provided by Kieren MacMillan, Jonathan Sondow[3].

For the first kth formulas:
k = 1, 1 + 2 + 3 + · · · + n = n(n+1)

2 = n2+n
2

k = 2, 12 + 22 + 32 + · · · + n2 = n(n+1)(2n+1)
6 = 2n3+3n2+n

6

k = 3, 13 + 23 + 33 + · · · + n3 =
(

n(n+1)
2

)2
= n4+2n3+n2

4

k = 4, 14 + 24 + 34 + · · · + n4 = n(n+1)(2n+1)(3n2+3n−1)
30

1

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 
ISSN 2229-5518 

1761

IJSER © 2015 
http://www.ijser.org 

 

IJSER



= 6n
5+15n4+10n3−n

30

k = 5, 15 + 25 + 35 + · · · + n5 = n2(n+1)2(2n2+2n−1)
12

= 2n
6+6n5+5n4−n2

12

k = 6, 16 + 26 + 36 + · · · + n6 =
n(n + 1)(2n + 1)(3n4 + 6n3 − 3n + 1)

42
(1)

=
6n7 + 21n6 + 21n5 − 7n3 + n

42
(2)

2 Methods

Method 1.

Using binomial coefficient formula it is know that (n+1)k =
k∑

i=0

(
k
i

)
ni (1).

Let’s call si = 1k + 2k + ... + ik =
i∑

j=1

jk.

Next relation can obtained by using formula (1):
(
k
0

) (
k
1

)
· · ·

(
k
k

)
0

0
(
k−1
0

)
· · ·

(
k−1
k−1

)
0

...
...

. . .
...

...(
k
0

) (
k
1

)
· · ·

(
k
k

)
1




ik

ik−1

...
si

 =


(
k
0

)
∗ ik +

(
k
1

)
∗ ik−1 + · · · +

(
k
k

)
∗ i0 + 0 ∗ si(

k−1
0

)
∗ ik−1 + · · · +

(
k−1
k−1

)
∗ i0 + 0 ∗ si

...(
k
0

)
∗ ik +

(
k
1

)
∗ ik−1 + · · · +

(
k
k

)
∗ i0 + 1 ∗ si



=


(i + 1)k

(i + 1)k−1

...
si+1


Let’s call

A =


(
k
0

) (
k
1

)
· · ·

(
k
k

)
0

0
(
k−1
0

)
· · ·

(
k−1
k−1

)
0

...
...

. . .
...

...(
k
0

) (
k
1

)
· · ·

(
k
k

)
1


By using above relation we can make next calculations:

An


1k

1k−1

...
s1

 =


nk

nk−1

...
sn


Matrix multiplication of two matrices size of k ∗ k can be done in O(k3). Ma-
trix multiplication is associative. Therefore using fast multiplication and above
formula sum of powers can be computed in complexity O(k3log(n)).

2

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 
ISSN 2229-5518 

1762

IJSER © 2015 
http://www.ijser.org 

 

IJSER



Method 2.
We can use divide and conquer algorithm [4][5] recursively:
if n is odd then f(n, k) = f(n− 1, k) + nk

if n is even then f(n, k) = f(n/2, k)+(n/2+1)k+(n/2+2)k+...+(n/2+n/2)k =

f(n/2, k) +
n/2∑
i=1

(n/2 + i)k = f(n/2, k) +
k∑

i=0

(
(
k
i

)
f(n/2, i)(n/2)k−i)k.

if n = 1 then f(n, k) = 1

We can precalculate binomial coefficients in O(k2) using it’s recursion formula(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. The recursion with different parameters should be called

klogn times. We will use memorization method for not solving one recursion
two times. One recursion call works in O(k). So the overall complexity of this
algorithm is O(k2log(n)).

Method 3.
As previously mentioned in general case f(n, k) is polynomial with degree (k+1).
Let’s find coefficients of polynomial efficiently. Using Lagrange’s interpolation
it can be done in complexity O(k2). In this problem values different at k + 2
points needed. We can calculate at first k + 2 points, in other way, f(i, k) for
1 <= i <= k + 2. So, for this part the complexity will be O(k).

Finally, using Lagrange’s polynomial interpolation values at k+2 different points
we can recover coefficients of f(n, k). Total complexity: O(k2).

3 Conclusion

In the table below we can compare methods listed before:

Method Description Complexity
1 matrix multiplication O(k3log(n))
2 Divide and conquer O(k2log(n))
3 Lagrange’s polynomial interpolation O(k2)

It is worth mentioning that we take complexity as O(1) of the operation with
two numbers such as multiplication, addition, subtraction and division. The

most efficient method in the list is Lagrange’s polynomial interpolation.

4 References

1. Donald E. Knuth (1993). ”Johann Faulhaber and sums of powers”. Math.
Comp. (American Mathematical Society) 61 (203): 277-294.

2. John H. Conway, Richard Guy (1996). The Book of Numbers. Springer.
p. 107.

3

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 
ISSN 2229-5518 

1763

IJSER © 2015 
http://www.ijser.org 

 

IJSER



3. Kieren MacMillan, Jonathan Sondow (2011). ”Proofs of power sum and
binomial coefficient congruences via Pascal’s identity”. American Mathe-
matical Monthly 118: 549-551.

4. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Intro-
duction to Algorithms (MIT Press, 2000)

5. Brassard, G. and Bratley, P. Fundamental of Algorithmics, Prentice-Hall,
1996.

4

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 
ISSN 2229-5518 

1764

IJSER © 2015 
http://www.ijser.org 

 

IJSER




